
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Number-Concentration structure factors and their long wavelength limit in
multicomponent fluid mixtures
A. B. Bhatiaa; V. K. Rattia

a Physics Department, University of Alberta, Edmonton, Canada

To cite this Article Bhatia, A. B. and Ratti, V. K.(1977) 'Number-Concentration structure factors and their long wavelength
limit in multicomponent fluid mixtures', Physics and Chemistry of Liquids, 6: 3, 201 — 213
To link to this Article: DOI: 10.1080/00319107708084140
URL: http://dx.doi.org/10.1080/00319107708084140

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319107708084140
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Phys. Chem. Liq., 1977, Vol. 6, pp. 201-213 
@ Gordon and Breach Science Publishers, Ltd., 1977 
Printed in Great Britain 
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Factors and their Long Wavelength 
Limit in Multicomponent Fluid 
M i xt u rest 
A. B. BHATIA and V. K. RATTI 

Physics Department, University of Alberta. Edmonton. Canada 

(Received October 20, 1976) 

Structure factors, similar to the number-concentration structure factors of a binary alloy, are 
introduced for multicomponent mixtures. Expressions for the long wavelength limit of these 
(and hence of the related, more conventional) structure factors are derived in terms of the 
various thermodynamic quantities and their variation with concentrations for some special 
cases is discussed. 

1 INTRODUCTION 

The structure (and therefore scattering etc., by) of a mixture containing v 
species of atoms is described, in general, by i v ( v  + 1) independent structure 
factors. These are usually defined such that each structure factor is directly 
related to the corresponding atoms pair correlation function, for example, 
the well-known partial structure factors amB(q) or SmB(q), u, /I = 1, 2,. . . , v 
[Faber and Ziman,' Ashcroft and Langreth' and Enderby and North3]. For 
a binary mixture, one may also introduce, following Bhatia and T h ~ r n t o n , ~  
the number concentration (N-C) structure factors S,,(q), S,,(q) and 
S,,(q), which are respectively associated with the number-number (density), 
number-concentration and concentration-concentration correlations. Re- 
cently several authors5-' have found the N-C formalism useful in inter- 
preting experimental data and it seems to be of interest to extend this 
formalism to multicomponent mixtures. 

t Work supported in part by the National Research Council of Canada. 
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202 A. B. BHATlA A N D  V. K. RA7TI 

In Section 2, we define the N-C structure factors for a multicomponent 
mixture and give some of their formal properties. The expressions for the 
long wavelength (wave number q + 0) limit of these structure factors are 
given in Section 3, which, as for a binary alloy, are found to be simply related 
to the various thermodynamic quantities. Section 4 discusses the behaviour 
of these expressions for some simple models of the mixtures. Finally, in 
Section 5 ,  the relationship between the N-C structure factors and the partial 
structure factors auB(9) is derived to obtain explicit expressions for aag(0). 

2 THE NUMBER-CONCENTRATION STRUCTURE FACTORS 

2.1 Notation and definition 

Consider a v-component mixture of volume V.  containing N u  atoms of type a 
where (x takes the values 1.2. . . . , v. Let N denote the total number of atoms 
and let c, be the average concentration of species a: 

Now if  n,(r) denote the instantaneous number density of the species 2. the 
deviation 6nu(r) from the mean is 

6n,(r) = n,(r) - 

where Rt, is the position of the 
expansion 

N u  N u  

v n, 
- = C 6(r - R",) - - 

V 

mth atom of type a. Making the Fourier 

1 
6n,(r) = - N,(q)e-'q''. 

v q  

N,(q) = eiq "6n,(r)d3r I 
= ~ e i q ' r =  - N,6 , . , .  

ni 

(2.4) 

The reality of 6n,(r) requires that N,(q) = N,*( - q). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



STRUCTURE OF MULTICOMPONENT MIXTURES 203 

Next let N(q) denote the Fourier transform of the local deviation 6n(r) 
in the total number density n(r) = nl(r) + n2(r) + . . . + n,.(r); then 

(2.5) 

The local deviation in the concentration of the species a may be specified by 

Sc,(r) = ( N -  l)(6nu(r) - cu6n(r)) (2.6) 

so that if 6nu(r)/6n(r) is equal to the average concentration of the species a, 
namely cu,  then 6cu(r) = 0, as it should. Denoting the Fourier transform of 
6c,(r) by C,(q), one has 

C,(q) = 6c,(r)eiq'r d3r = (N-l)(N,(q) - c,N(q)). (2.7) i 
Only v - 1 of C,(q) are. of course. independent of one another since 

V 

Making now the convention that the first v - 1 concentration variables 
are the independent ones, the N-C structure factors may be defined as 
( r , j = l , 2  ,.... v -  I )  

1 
S,,(q) = (N*(q)N(q)) (2.9) 

SNC,(q) = $(N*(q)Ci(q) + N(q)C?(q)) 

& , C , ( d  = w c ? ( s ) c , { s )  + C;(q)Cj*(q)) 

(2.10) 

(2.1 1) 

where (. . . .) denotes ensemble average. For a fluid mixture, from symmetry, 
S,,(q) etc. depend on the magnitude q of q only. 

We observe that a s .  (2.9)-(2.11) define, in all, i v ( v  + 1) structure factors. 
Of these S,,(q) is similar to the structure factor S(q)  of a pure fluid, since it is, 
like S(q), associated with the fluctuations in the number density of the 
atoms. The +v(v - 1) structure factors S,-,=,(4) = [SCK8(q)] are associated 
with the intercorrelations between the fluctuations in the v - 1 (chosen) 
independent concentration variables and the remaining v - 1 structure 
factors SNC,(4),  arise from the cross-correlations between the fluctuations in 
density and the concentrations. For a binary mixture v = 2, so that i = j = 1, 
and Eqs. (2.9)-(2.11) reduce to the definitions of the three N-C structure 
factors S,N(q), S,,(q) and S,&) introduced in Ref. 4. Further significance 
of the N-C structure factors will become apparent as we proceed. 
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204 A. B. BHATIA AND V. K. RATTI 

We remark here that throughout the paper we denote, as above, an index 
by a Greek letter (a or /3) when it runs from 1 to v and by a Roman letter 
( i , j ,  etc.) when it refers to only from 1 to v - 1 .  

2.2 Sum rules and expression for scattering 

Like the case of a binary mixture, SNN(q) etc. defined in (2.9)-(2.11) obey 
certain sum rules. The method for obtaining these is standard, for example, 
see Ref. 4. One obtains (i, j = 1,2, . . . , v - 1) 

(2.10) 

and 

which show that as 9 + 00, S,,(q) -, 1, SNc,(q) -, 0, Scici(q) + ci(l - ci) 
and Sc,cj(q) + -cicj for i # j. 

The scattering or X-rays or the coherent scattering of neutrons is essential& 
given by the scattering function I(q): 

(2.13) 

where 
V - 

W =  CcaWa and A W = F - K .  
a =  1 

(2.15) 

(2.16) 
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STRUCTURE OF MULTICOMPONENT MIXTURES 205 

In obtaining (2.15) we have set (Im N*(q)Ci(q)) = 0 and (Im Cf(q)C,(q)) 
= 0 (Im stands for the imaginary part), as expected in general on grounds of 
symmetry.' If all the W, are real, or have the same phase, then (2.1 5) is true 
irrespective of whether these terms are zero or not. 

D =  

3 LONG WAVELENGTH LIMIT OF STRUCTURE FACTORS 

GI1 G,z . . .  G ~ , v - i  

G,l G22 . . .  GZ,,-I 
(3.3) .......................... 

Gs-1.1 ... G , . - I  ,,-, 

As in the case of a binary mixture:"' for q -+ 0, the N-C structure factors 
defined in (2.9)-(2.11) have the following physical meaning: 

where ((AN)') is the mean square fluctuations in the number of particles 
in the volume V of the medium, ( (AC;)~)  is the mean square fluctuation in 
the concentration of the ith species, Aci being defined by 

AN; - c;AN 
N '  

Aci = 

and (ANAc,) and (AcjAcj). i # j ,  represent the correlations between the 
fluctuations AN and Aci and between Ac; and Acj respectively. The expres- 
sions for S,,(O) etc., in terms of the various thermodynamic functions, 
may be derived from statistical thermodynamics. One finds, firstly, for the 
subgroup of structure factors Sc,cJ (the derivation is lengthy but similar 
to that given in Ref. 4 for a binary mixture and is omitted here for brevity) 

NkB TG" 
D &-,C,(O) = -- (3.2) 

where 

(3.4) 
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206 A. B. BHATIA AND V. K. RATTI 

G being the Gibbs free energy of the mixture and P the pressure. The sub- 
script c' in (3.4) implies that during differentiation with respect to a ci all 
other concentrations are held constant. Note that in differentiation with 
respect to a c,. c ,  = 1 - c1  - c 2 . .  . . , c, - is to be regarded as a dependent 
variable. 

For the simple case of a ternary mixture. (3.2) reads 

with 

D = G11G22 - (G12)'. (3.5) 

For a binary mixture, of course, one has only Sclcl(0), the expression for 
which is just Sr,r,(O) = N k B T / G ,  1, in agreement with the result of Ref. 4. 

The q -, 0 limit of other structure factors S,r,(q) and s,N(q). is given by 

where 

is the isothermal compressibility (at constant e l .  c 2 . .  . . . c, - 1 )  and 6; are the 
dilatation factors: 

where v(= z= I u,c,) is the molar volume. per atom, of the mixture, and a 
u , ,  q or u, is the partial molar volume, per atom, of the species indicated by 
the subscript on u. 

We observe from (3.6) and (3.8) that if all the partial molar volumes 
'L.', are equal to one another, then all di = 0 and hence all SNc-,(0) = 0, 
indicating that the fluctuations in AN and those in concentrations are 
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STRUCTURE OF MULTICOMPONENT MIXTURES 207 

independent of one another, as one might expect intuitively. A given SNc,(0)  
can, of course, be zero, under less restrictive conditions on u, depending 
on the behaviour of Sc,cJ(0). For example, for an ideal solution, for which 
S,-,,.,(O) are given by Eq. (4.5) below, it may be seen from (3.6) that S,,,(O) = 0 
if v ,  = u. As regards SNdO). it may be noted that if all the di = 0, then S”(0) 
has the form corresponding to a pure fluid, namely 

4 S , , ( O )  FOR SOME SPECIAL CASES 

The Gibbs free energy G can be quite generally written as a sum of three 
terms : 

G = N C C , G : ~ ’  + Gid + GE (4.1 ) [,I, 1 
where GLo) is the molar free energy, per atom, of the species a in its pure 
state, G“ is the free energy of mixing for an ideal solution, namely it  is just 
( -  T) times the entropy of random mixing: 

V 

G“ = N k B T  1 C, In c,. 
u =  1 

(4.2) 

and G E  is the excess free energy. The first term in (4.1) is linear in c, so that 
only the second and third terms contribute to Gij and hence to Sc,c,(0). 
(The volume, K~ and Si of course depend on the first term and also, depending 
on its form, on GE.)  

Substituting (4.1) and (4.2) in (3.4) and introducing the notation: 

x. L ( E )  
” NkB T dc, dc, ,. p .  h’. c. 

one has 

(4.3) 

(4.4) 

For an ideal solution GE = 0 and hence Xij = 0, and it is a simple matter to 
evaluate the various determinants involved in the expression (3.2) for Sc,c,(0). 
One obtains 

S&,(O) = Ci(l  - C i )  

S$-,(O) = - c j c j .  i # j  (4.5) 
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208 A. B. BHATIA AND V. K. R A T 1  

where the superscript “ id”  has been added to indicate that these expressions 
refer to an ideal solution. 

When the solution is not ideal (Xij # 0), the expliGi expressions for 
Sc,cj(0) become, in general, progressively involved as v increases. For a 
ternary mixture the expressions for Sc,-,(0) are, usin; (4.4) in (3.5) 

where 

9 = [l + c,( l  - C,)X” + C,(l  - C2)X22  - 2c ,c2x , ,  

+ c 1 ~ 2 ~ 3 ( x 1 1 x 2 2  - x?2)1. (4.7) 

As an example, we examine here the behaviour of Sc,,,(0) for the model 
of conformal solutions (or of regular solutions in the zeroth approximation) 
which has been frequently used’ in discussions on thermodynamic 
properties of mixtures. The necessary conditions for the validity of the model 
are (a) that the various ratios uJus between the atomic volumes of the different 
species lie between 4 and 2, as for an ideal solution, and (b) I T 1 < 2, 
where was are, appropriately defined, pairwise interchange energies (was = 0, 
for a = b). In terms of oas, G E  for this model is given by 

so that 

x i j  = ( k B  T ) -  ‘ (W; ,  - mi,, - O,,.) (4.9) 

remembering that oij = 0, if i = j .  For a ternary mixture, v = 3, and (4.9) 
gives 

202 3 
x22 = - - 2 0 ,  3 X , ’  = -- 

k B T ’  kBT 

and (4.10) 
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STRUCTURE OF MULTICOMPONENT MIXTURES 209 

Substituting (4.10) in (4.6) one gets 

(4.1 1 )  

where 

(4.12) 

If in the above expressions we let c2 = 0, c3 = 1 - c l ,  so that we have a 
binary mixture of species 1 and 3, then one has only Sclcl(0) and the expres- 
sion for it  becomes 

(4.13) 

which is just the well known expression for ScJO) for a binary conformal 
solution. 

There are, of course, other approximations to .GE available in the liter- 
ature,' l-'' e.g. the well known Flory's approximation which is valid when 
mi, are small, as above, but VJU, deviate considerably from unity. Since the 
calculations of ScICi(O), once G' is given, are straightforward, we do not 
pursue the matter further here. 

Experimentally it is often the thermodynamic activities a,, rather than 
GE,  which are directly measured. If 7, = UJC, denote the activity coefficient 
of species a, one has, by definition, 

(4.14) 

where subscript N' indicates that all N ,  (b # a) are held constant during 
differentiation. Hence, remembering that X j j  is given by (4.3). it is readily 
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210 A. B. BHATIA AND V. K .  RATTI 

shown that? 

and conversely. 

(4.16) 

Note that X j ,  = X i j ,  but, in general, d In yi/dcj # d In yj/dci. The various 
yu.  of course, satisfy the usual Gibb-Duhem type relations 

which as most recently emphasized by DarkenI4 provide useful checks 
on the internal consistency of measurements and (or) extrapolations. Using 
the fact that d In y,.ldN, = d In y s / d N , ,  and changing the independent 
variables to c,, Eq. (4.1 7) may be equivalently written as (r, r' = 1,2,. . . , v - 1) 

wi th i=  1.2 . . . . ,  v -  l a n d  

i 
a= 1 

where it is understood that 

(4.18) 

(4.19) 

(a/&,) = (d/dcr),, p.c.. etc. Equations (4.18)- 
(4.19) may be regarded as generalizations of the corresponding equations 
obtained by DarkenI4 for a ternary mixture. 

Finally, it is of interest to consider the mixture in the dilute solution limit, 
that is, where one of the components, say c,, tends to unity. For this case 
all c,  -+ 0, i = 1,2, .  . . , v - 1, and one obtains. to second order in c,, the 
following expressions for Sc,rJ(0) : 

(4.20) &,c-,(O) = c,(l - CI) - w,2 
ScJc,(O) = -c,c,(l + E,,). i # J 

t Note that for any thermodynamic function 

where c implies all c, are held fixed during differentiation and (d$/dN),  
(@IN) i f  IL is an extensive variable and zero if i t  is an intensive variable, 

is. of course. just 
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STRUCTURE OF MULTICOMPONENT MIXTURES 21 1 

where t i j  = (Xij) , ,- , l .  The ci j  (= E ~ ~ )  are identical with the WagnerI5 inter- 
action coefficients ($) well known in metallurgy. The latter are defined by 

(4.21) 

so that one sees immediately from (4.16) that .$'j = c i j .  For a conformal 
solution X i j  are independent of the concentrations and the cij are just given 
by (4.9). For a recent tabulation and list of references on experimental 
values of the Wagner-coefficients see Sigworth and ' 

5 LONG WAVELENGTH LIMIT OF THE PARTIAL STRUCTURE 
FACTORS 
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cz(atu(q) + ajz(q)) + 1 I: cucBaap(4)) 
n . P =  I 

+ c;6;, j - c;c,. (5.9) 
Since the above relations are valid at all q, Eqs. (5.4)-(5.6) may be used to 

evaluate the q + 0 limit of aaB. For this one has only to remember that 
S,,-,(O) and S N N ( 0 )  are related to Scic,(0) by (3.6) and (3.7) and that S,,,(O) are 
to be determined as described in Section 4. Two special cases for which the 
expressions for ai,{O) simplify considerably may be noted here. 

First. for an ideal solution ScicJ(0) are given by (4.6) and one finds 

S,,,(O) = --cjAi, S,,(O) = 0 + G (5.10) 

and hence 
- 

aaB(0) = 0 + A2 - A, - Aa (5.1 1) 

where 

0, - 0 
Au = -, 

V 

F = E c , A Z .  
V a =  1 

(5.12) 

If, in addition, the partial molar volumes of the different species are the same, 
then all Au = 0 and ~ ( 0 )  = 8 for all a and B. For this case, one, of course, 
expects that the various a.p(q) will be the same also at all q. 

Secondly, if we consider the solution in the dilute limit, taking c, -+ 1, 
then Sc,cJ(0) are given by (4.20). Using (4.20) and (3.6)-(3.7) in (5.4)-(5.6), 
one obtains, for c, -+ 1, 

a , , ( O ) = O - 6 , - 6 , - ~ , , .  i . j =  1.2 ..... V -  I. (5.13) 

u, , (o)  = e - 6,. a,,(o) = 8. (5.14) 

Equations (5.13) show that even in the dilute limit the a,,{O) depend both 
on the dilatation factors and on the deviation of the mixture from ideality, 
just as a1 1(0) does in a dilute (with c2 -+ I )  binary mixture as noted by Bhatia 
et a/." and, in terms of Wagner coefficient t1 I ,  by Bellissent and Desre.I9 

6 S U M M A R Y  

In this paper we have defined and discussed some of the properties of the 
number-concentration (N-C) structure factors for multicomponent mixtures. 
In this (N-C) scheme, the i v ( v  + 1) independent structure factors, required 
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STRUCTURE OF MULTICOMPONENT MIXTURES 213 

for the description of a v-component mixture, consist of (1) a group of 
t v ( v  - 1) structure factors Sc,cJ(q) which are associated with correlations 
amongst the various (v - 1) concentrations, (2) v - 1 structure factors, 
SKc,(q), associated with the density-concentration correlations and (3) the 
structure factor S,,(q) associated with the density-density correlations. 
In the q -+ 0 limit, the expressions for Sc,cJ(0) are completely determined 
if the free energy of mixing (or thermodynamic activities) is known as a 
function of concentrations. The determination of S,,,(O) and S”(0) involves 
a knowledge of Sc,c,(0), compressibility and the dependence of volume on 
concentrations. The behaviour of Sc,cJ(0) for several special cases is examined. 
In particular, for the dilute solution limit Sc,cJ(0) are found to be simply 
related to the well known Wagner interaction coefficients. Finally, the 
relationship between the N - C  structure factors and the partial structures 
a,,,(q) is given, which enables one to obtain convenient expressions for 
aap(0) in terms of thermodynamic quantities. 
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